Future socioeconomic development along the West African coast forms a larger hazard than sea level rise

Sub Levels


  • Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea level rise and coastal flooding – a global assessment. PLoS ONE 10, e0118571 (2015).

    Article 

    Google Scholar 

  • Cazenave, A. & Cozannet, G. L. Sea level rise and its coastal impacts. Earth’s Future 2, 15–34 (2014).

    Article 

    Google Scholar 

  • Hino, M. & Nance, E. Five ways to ensure flood-risk research helps the most vulnerable. Nature 595, 27–29 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jevrejeva, S. et al. Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environ. Res. Lett. 13, 074014 (2018).

    Article 

    Google Scholar 

  • Hallegatte, S. et al. From poverty to disaster and back: a review of the literature. Econ. Dis. Clim. Change 4, 223–247 (2020).

    Google Scholar 

  • Herrera-García, G. et al. Mapping the global threat of land subsidence. Science 371, 34–36 (2021).

    Article 

    Google Scholar 

  • Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2020).

    Article 

    Google Scholar 

  • Nicholls, R. J., Lincke, D. & Hinkel, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 11, 338–342 (2021).

    Article 

    Google Scholar 

  • Bagheri-Gavkosh, M., Hosseini, S. M. & Ataie-Ashtiani, B. Land subsidence: a global challenge. Sci. Total Environ. 778, 146193 (2021).

    Article 
    CAS 

    Google Scholar 

  • Arkema, K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    Article 

    Google Scholar 

  • Dada, O., Almar, R., Morand, P. & Menard, F. Towards West African coastal social-ecosystems sustainability: interdisciplinary approaches. Ocean Coast. Manag. 211, 105746 (2021).

    Article 

    Google Scholar 

  • Dada, O. A., Almar, R. & Oladapo, M. I. Recent coastal sea-level variations and flooding events in the Nigerian Transgressive Mud coast of Gulf of Guinea. J. African Earth Sci. 161, 103668 (2020).

    Article 

    Google Scholar 

  • Nyadzi, E. et al. Taking stock of Climate Change induced Sea Level Rise across the West African Coast. Environ. Claims J. 33, 77–90 (2021).

    Article 

    Google Scholar 

  • Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cisse, C. O. et al. Extreme coastal water levels with potential flooding risk at the low-lying Saint Louis historic city, Senegal (West Africa). Front. Mar. Sci. 9, 993644 (2022).

    Article 

    Google Scholar 

  • Mafaranga, H. Sea level rise may erode development in Africa. Eos https://doi.org/10.1029/2020EO151568 (2020).

  • Kirezci, E. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 10, 11629 (2021).

    Article 

    Google Scholar 

  • Melet, A., Meyssignac, B. & Almar, R. Under-estimated wave contribution to coastal sea level rise. Nat. Clim. Change 8, 234–239 (2018).

    Article 

    Google Scholar 

  • Vousdoukas, M. I. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0260-4 (2018).

  • Rueda, A. et al. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Sci. Rep. 7, 5038 (2017).

    Article 

    Google Scholar 

  • Muis, S. et al. A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earth’s Future 5, 379–392 (2017).

    Article 

    Google Scholar 

  • Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st Century sea-level rise. Proc. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hinkel, J. et al. Sea-level rise impacts on Africa and the effects of mitigation and adaptation: an application of DIVA. Reg. Environ. Change 12, 207–224 (2012).

    Article 

    Google Scholar 

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 33–144 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).

  • Nicholls, R. J. & Lowe, J. A. Benefits of mitigation of climate change for coastal areas. Glob. Environ. Change. 14, 229–244 (2004).

    Article 

    Google Scholar 

  • Wu, T. & Barrett, J. Coastal land use management methodologies under pressure from climate change and population growth. Environ. Manag. 70, 827–839 (2022).

    Article 

    Google Scholar 

  • Rentschler, J., Salhab, M. & Jafino, B. A. Flood exposure and poverty in 188 countries. Nat. Commun. 13, 1–11 (2022).

    Article 

    Google Scholar 

  • Winsemius, H. et al. Global drivers of future river flood risk. Nat. Clim. Chang. 6, 381–385 (2016).

    Article 

    Google Scholar 

  • Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Chang. 3, 816–821 (2013).

    Article 

    Google Scholar 

  • Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ward, P. J. et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang. 7, 642–646 (2017).

    Article 

    Google Scholar 

  • Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2020).

    Article 

    Google Scholar 

  • Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020).

    Article 

    Google Scholar 

  • French, H. W. Megalopolis: How Coastal West Africa Will Shape The Coming Century. https://www.theguardian.com/world/2022/oct/27/megalopolis-how-coastal-west-africa-will-shape-the-coming-century (2022).

  • United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3 (Accessed on: 07 March). https://population.un.org/wpp/ (2023).

  • Almar, R. et al. Coastal zone changes in west africa: challenges and opportunities for satellite earth observations. Surv. Geophys. 44, 249–275 (2023).

    Article 

    Google Scholar 

  • OECD/UN ECA/AfDB. Africa’s Urbanisation Dynamics 2022: The Economic Power of Africa’s Cities, West African Studies (OECD Publishing,2022). https://doi.org/10.1787/3834ed5b-en (2022).

  • Walther, O. “Urbanisation and demography in North and West Africa, 1950-2020”. West African Papers, No. 33 (OECD Publishing, 2021). https://doi.org/10.1787/4fa52e9c-en.

  • Newton, A. et al. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00144 (2020).

  • Akubia, E. J. Coastal urbanization and urban land-use change in the Greater Accra Metropolitan Area, Ghana. Water-Power Working Paper, No. 10. Governance and Sustainability Lab. (Trier University, 2016).

  • Olaniyi, W. A. The proposed Eko Atlantic City project, Victoria Island, Lagos: Preliminary impact assessment of land reclamation on the aquatic lives and climate change. Nig. J. Anim. Prod. 48, 194–200 (2021).

  • Ajibade, I. Can a future city enhance urban resilience and sustainability? A political ecology analysis of Eko Atlantic city, Nigeria. Int. J. Disaster Risk Reduct. 26, 85–92 (2017).

    Article 

    Google Scholar 

  • Asomani-Boateng, R. Urban wetland planning and management in Ghana: a disappointing implementation. Wetlands 39, 251–261 (2019).

    Article 

    Google Scholar 

  • Zoma, V. & Sawadogo, Y. Main characteristics of African cities. Quest J. Res. Humanit. Soc. Sci. 10, 11–17 (2022).

    Google Scholar 

  • Moriconi-Ebrard, F. et al. Africapolis (English version): Urbanization study in West Africa (1950-2020). (2008). HAL Open Science. ffhalshs00368181.

  • African Strategies for Health (ASH). A Corridor Of Contrasts- On The Road From Abidjan To Lagos, Urbanization Offers Risk And Opportunity, Hardship And Hope. https://www.africanstrategies4health.org/uploads/1/3/5/3/13538666/a_corridor_of_contrasts_final.pdf (Accessed on: March 07, 2023). (2015).

  • United Nations Human Settlements Programme (UN-HABITAT). The State of African Cities 2010: Governance, Inequality and Urban Land Markets. p. 98 (2010).

  • Croitoru, L., Miranda, J. J., Sarraf, M. The Cost of Coastal Zone Degradation in West Africa: Benin, Côte d’Ivoire, Senegal and Togo (World Bank, 2019).

  • Braimoh, A. K. & Takashi, O. “Spatial determinants of urban land use change in Lagos, Nigeria.”. Land Use Policy 24, 502–515 (2007).

    Article 

    Google Scholar 

  • Aliyu, A. and Amadu, L. Urbanization, cities and health: the challenges to Nigeria: A review. Wolters Kluvert/Medknow Publications. Ann. Afr. Med. 16, 149–158 (2017).

  • Healy, A. et al. Domestic groundwater abstraction in Lagos, Nigeria: a disjuncture in the science-policy-practice interface? Environ. Res. Lett. 15, 45006 (2020).

    Article 

    Google Scholar 

  • Yusuf, M. A. & Abiye, T. A. “Risks of groundwater pollution in the coastal areas of Lagos, southwestern Nigeria.”. Groundw. Sustain. Dev. 9, 100222 (2019).

    Article 

    Google Scholar 

  • Oiro, S. et al. Depletion of groundwater resources under rapid urbanisation in Africa: recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeol. J. 28, 2635–2656 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tijani, M. N. et al. Land-use changes and urbanization impacts on livelihood and groundwater sustainability of coastal areas of Lagos, SW-Nigeria: Integrated GIS-based, livelihood and hydrochemical assessments. J. Min. Geol. 54, 187–202 (2018).

    Google Scholar 

  • Nguyen, M. et al. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Eng. Geol. 299, 106555 (2022).

    Article 

    Google Scholar 

  • Holzer, T. L. & Johnson, A. I. Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 11, 245–255 (1985).

    Article 

    Google Scholar 

  • Ikuemonisan, F. E. & Ozebo, V. C. Characterisation and mapping of land subsidence based on geodetic observations in Lagos, Nigeria. Geod. Geodyn. 11, 151–162 (2020).

    Article 

    Google Scholar 

  • Ohenhen, L. O. & Shirzaei, M. Land subsidence hazard and building collapse risk in the coastal city of Lagos, West Africa. Earth’s Future 10, e2022EF003219 (2022).

    Article 
    CAS 

    Google Scholar 

  • Adeleke, B. O. Human population growth as proximate cause of wetland dynamics. Inter. J. Human Capital Urb. Manage. 2, 259–266 (2017).

    Google Scholar 

  • Satterthwaite, D. The impact of urban development on risk in sub-Saharan Africa’s cities with a focus on small and intermediate urban centres. Inter. J. Disaster Risk Reduct. 26, 16–23 (2017).

    Article 

    Google Scholar 

  • Ajibola, M. O., Adewale, B. A. & Ijasan, K. C. Effects of urbanization on Lagos Wetlands. Inter. J. Business Soc. Sci. 3, 310–318 (2012).

    Google Scholar 

  • Wu, P.-C., Wei, M. M. & D’Hondt, S. Subsidence in Coastal Cities throughout the world observed by InSAR. Geophys. Res. Lett. 49, e2022GL098477 (2022).

    Google Scholar 

  • Africa Center for Strategic Studies (ACSS). Rising Sea Levels Besieging Africa’s Booming Coastal Cities. 2022. https://africacenter.org/spotlight/rising-sea-levels-besieging-africas-booming-coastal-cities-lagos-dakar-alexandria-maputo-nile/ (Accessed on: 8 March) (2023).

  • Danso, G. K. et al. Exploring the effects of rapid urbanization on wetlands: insights from the Greater Accra Metropolitan Area, Ghana. SN Soc. Sci. 1, 212 (2021).

    Article 

    Google Scholar 

  • Dodman, D., Leck, H., Rusca, M. & Colenbrander, S. African Urbanisation and Urbanism: implications for risk accumulation and reduction. Int. J. Disaster Risk Reduct. 26, 7–15 (2017).

    Article 

    Google Scholar 

  • Thompson, J. R. Africa’s Floodplains: a hydrological overview. In Schuyt, K.D. Economic consequences of wetland degradation for local population in Africa. Ecol. Econ. 53, 177–190 (2005).

    Article 

    Google Scholar 

  • The Guardian. Lagos is set to double in size in 15 years. Will it ‘spoil’? https://www.theguardian.com/cities/2016/feb/22/lagos-population-double-size-how-cope (Accessed 13 March) (2023).

  • Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat. Commun. 12, 3592 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gesch D. B. Best practices for elevation-based assessments of sea level rise and coastal flooding exposure. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00230 (2018).

  • Gallien, T. W. et al. Coastal flood modelling challenges in defended urban backshores. Geosciences 8, 450 (2018).

    Article 

    Google Scholar 

  • Seenath, A., Wilson, M. & Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: which is better for guiding coastal management. Ocean Coast. Manag. 120, 99–109 (2016).

    Article 

    Google Scholar 

  • Yunus, A. P., Avtar, R. & Kraines, S. Uncertainties in tidally adjusted estimates of sea level rise flooding (Bathtub Model) for the greater London. Remote Sens. 8, 366 (2016).

    Article 

    Google Scholar 

  • Anderson, T. R. et al. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 8, 14484 (2018).

    Article 

    Google Scholar 

  • Merkens, J. L., Reimann, L., Hinkel, J. & Vafeidis, A. T. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Glob. Planet. Change 145, 57–66 (2016).

    Article 

    Google Scholar 

  • Smith, A. et al. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10, 1–7 (2019).

    Article 

    Google Scholar 

  • MacManus, K. et al. Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter. Earth Syst. Sci. Data 13, 5747–5801 (2021).

    Article 

    Google Scholar 

  • Hinkel, J. et al. Uncertainty and bias in global to regional scale assessments of current and future coastal flood risk. Earth’s Future 9, e2020EF001882 (2021).

    Article 
    CAS 

    Google Scholar 

  • Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12, 3775 (2021).

    Article 
    CAS 

    Google Scholar 

  • Benveniste, J. et al. Requirements for a coastal hazards observing system. Front. Mar. Sci. 6, 348 (2019).

    Article 

    Google Scholar 

  • Melet, A. et al. Earth observations for monitoring marine coastal hazards and their drivers. Surv. Geophys. 41, 1489–1534 (2020).

    Article 

    Google Scholar 

  • Abessolo, G. O. et al. African coastal camera network efforts at monitoring ocean, climate, and human impacts. Sci. Rep. 13, 1514 (2023).

    Article 
    CAS 

    Google Scholar 

  • Almeida, L. P. et al. Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery. Remote Sens. 11, 590 (2019).

    Article 

    Google Scholar 

  • Taveneau, A. et al. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived digital elevation model and shoreline. Remote Sens. 13, 2454 (2021).

    Article 

    Google Scholar 

  • Salameh, E. et al. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: a review. Remote Sens. 11, 2212 (2019).

    Article 

    Google Scholar 

  • Bergsma, E. W. et al. Coastal morphology from space: a showcase of monitoring the topography-bathymetry continuum. Remote Sens. Environ. 261, 112469 (2021).

    Article 

    Google Scholar 

  • Almar, R. et al. Coastal topo-bathymetry from a single-pass satellite video: insights in space-videos for coastal monitoring at Duck Beach (NC, USA). Remote Sens. 14, 1529 (2022).

    Article 

    Google Scholar 

  • Dodet, G. et al. The contribution of wind-generated waves to coastal sea-level changes. Surv. Geophys. 40, 1563–1601 (2019).

    Article 

    Google Scholar 

  • Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e2020JC016078 (2020).

    Article 

    Google Scholar 

  • Pujol, M. I. et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090 (2016).

    Article 

    Google Scholar 

  • Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00234 (2019).

  • Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article 

    Google Scholar 

  • Sterl, A. & Caires, S. Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int. J. Climatol. 25, 963–977 (2005).

    Article 

    Google Scholar 

  • Caires, S., Swail, V. & Wang, X. Projection and analysis of extreme wave climate. J. Clim. 19, 5581–5605 (2006).

    Article 

    Google Scholar 

  • Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588 (2006).

    Article 

    Google Scholar 

  • Yamazaki, D. et al. A high accuracy map of global terrain elevations. Geophys. Res. Lett. https://doi.org/10.1002/2017GL072874 (2017).

  • Haasnoot, M. et al. Long-term sea-level rise necessitates a commitment to adaptation: A first order assessment. Clim. Risk Manag. 34, 100355 (2021).

    Article 

    Google Scholar 

  • McClean, F., Dawson, R. & Kilsby, C. Implications of using global digital elevation models for flood risk analysis in cities. Water Resour. Res. 56, e2020WR028241 (2020).

    Article 

    Google Scholar 

  • Hawker, L. et al. Implications of simulating global digital elevation models for flood inundation studies. Water Resour. Res. 54, 7910–7928 (2018).

    Article 

    Google Scholar 

  • Breilh, J. F., Chaumillon, E., Bertin, X. & Gravelle, M. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (Western France). Nat. Hazards Earth Syst. Sci. 13, 1595–1612 (2013).

    Article 

    Google Scholar 

  • Poulter, B. & Halpin, P. N. Raster modelling of coastal flooding from sea level rise, Inter. J. Geogr. Inf. Sci. https://doi.org/10.1080/13658810701371858 (2007).

  • Prahl, B. et al. Damage and protection cost curves for coastal floods within the 600 largest European cities. Sci. Data 5, 180034 (2018).

    Article 

    Google Scholar 

  • Wang, S. et al. Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 13, 054014 (2018).

    Article 

    Google Scholar 

  • Titus, J. G. & Richman, C. Maps of lands vulnerable to sea level rise: modeled elevations along the US atlantic and gulf coasts. Clim. Res. 18, 205–228 (2001).

    Article 

    Google Scholar 

  • Strauss, B. H., Ziemlinski, R. & Weiss, J. L. Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environ. Res. Lett. 7, 014033 (2012).

    Article 

    Google Scholar 

  • Vaan de Sante, B., Lansen, J. & Claartje, H. Sensitivity of coastal flood risk assessments to digital elevation models. Water 4, 568–579 (2012).

    Article 

    Google Scholar 

  • Hawker, L., Neal, J. & Bates, P. Accuracy assessment of the TanDEMX 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 232, 111319 (2019).

    Article 

    Google Scholar 

  • Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 (NASA Socioeconomic Data and Applications Center (SEDAC), 2018).

  • Gao, J. Global 1-km Downscaled Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01. (NASA Socioeconomic Data and Applications Center (SEDAC), 2020) https://doi.org/10.7927/q7z9-9r69.

  • Wang, T. & Sun, F. Gross domestic product (GDP) downscaling: a global gridded dataset consistent with the Shared Socioeconomic Pathways [Data set]. In Scientific Data 9 (221), 1-10. Zenodo https://doi.org/10.5281/zenodo.5880037 (2022).

  • Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Article 

    Google Scholar 

  • Macrotrends.net. Largest Countries by Population. https://www.macrotrends.net/countries/ranking/population (accessed on 13 March) (2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *